Finerenone Reduces New-Onset Atrial Fibrillation across the Spectrum of **Cardio-Kidney-Metabolism: the FINE-HEART Pooled Analysis**

Maria A. Pabon, MD¹; Gerasimos Filippatos, MD²; Brian L. Claggett, PhD¹; Michael Zi Miao, MS¹; Akshay S. Desai, MD¹; Pardeep S. Jhund, MD, PhD³; Alasdair Henderson, PhD³; Meike Brinker, MD4; Patrick Schloemer, PhD⁴; Lucas Hofmeister, PhD⁴; Li Li, MD, MPH, MBA⁴, Carolyn S.P. Lam, MD, PhD⁵; Michele Senni, MD^{6,7}; Sanjiv J. Shah, MD⁸; Adriaan A. Voors, MD, PhD⁹; Faiez Zannad, MD¹⁰; Peter Rossing, MD¹¹; Luis M. Ruilope, MD¹²; Stefan D. Anker, MD¹³; Bertram Pitt, MD¹⁴; Rajiv Agarwal, MD¹⁵; John J.V. McMurray, MD³; Scott D. Solomon, MD¹; Muthiah Vaduganathan, MD, MPH¹

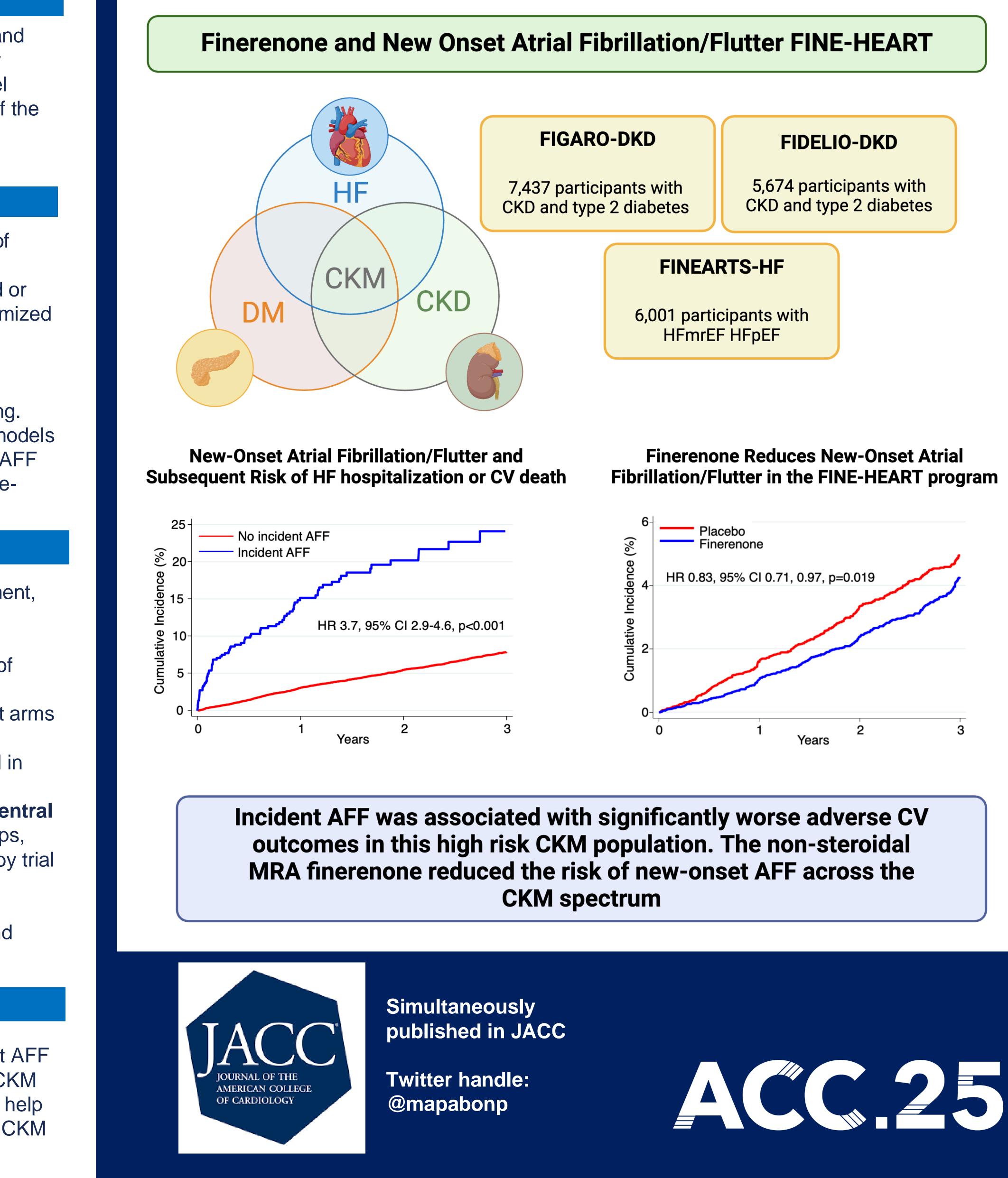
Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA

National and Kapodistrian University of Athens, School of Medicine, Attikon University Hospital, Athens, Greece. 3. British Heart Foundation Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom. 4. Bayer, Research & Development, Pharmaceuticals, Berlin, Germany. 5. National Heart Centre Singapore. 6. University Bicocca Milan, Milan, Italy. 7. Papa Giovanni XXIII Hospital, Bergamo, Italy. 8. Northwestern University Feinberg School of Medicine, Chicago, IL, USA. 9. Université de Lorraine, Inserm Clinical Investigation Centre, CHU, Nancy, France. 11. Steno Diabetes Center Copenhagen and University of Copenhagen, Copenhagen, Denmark. 12. Hospital 12 de Octubre, Madrid, Spain. 13. Department of Cardiology (CVK) of German Heart Center Charité; German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin, Berlin, Germany. 14. University of Michigan, Ann Arbor, MI, USA. 15. Indiana University School of Medicine, Indianapolis, IN, USA.

BACKGROUND

Mineralocorticoid receptor antagonists (MRA) modulate cardiac and systemic pathways such as fibrosis and inflammation, which may contribute to onset of atrial fibrillation (AF). In this participant-level pooled analysis of 3 large clinical trials, we evaluated the effect of the non-steroidal MRA finerenone on incident AF across the cardiokidney-metabolic (CKM) spectrum.

METHODS


In this prespecified analysis, we pooled participants from 2 trials of chronic kidney disease and type 2 diabetes (FIDELIO-DKD and FIGARO-DKD) and a trial of heart failure (HF) with mildly reduced or preserved ejection fraction (FINEARTS-HF). Patients were randomized 1:1 to finerenone or placebo. New-onset AFF was prospectively adjudicated in all trials by blinded clinical event committees and required electrocardiographic confirmation on 12-lead ECG, electrophysiology study, telemetry, or short-term rhythm monitoring. The risk of new-onset AFF was evaluated using Cox regression models stratified by region and trial. The association between new-onset AFF and subsequent risk of clinical outcomes was assessed using timeupdated Cox proportional hazards models.

RESULTS

- Among 14,581 patients who were free from AFF at trial enrollment, 631 (4.3%) developed new-onset AFF during follow-up.
- Predictors of new-onset AFF included older age, history of HF, higher body mass index, geographic region, and higher levels of urine albumin creatinine ratio.
- Baseline characteristics were well-balanced between treatment arms (finerenone vs. placebo)(**Table 1**)
- During 2.9 years of median follow-up, new-onset AFF occurred in 286 (3.9%) participants receiving finerenone and 345 (4.7%) assigned to placebo (HR 0.83, 95% CI 0.71, 0.97, p=0.019) (Central figure). Risk reductions were consistent across major subgroups, irrespective of number of CKM conditions (P_{interaction}=0.87) and by trial $(P_{interaction} = 0.57)$ (Figure 1).
- Participants with new-onset AFF were at significantly higher subsequent risk of cardiovascular death, HF hospitalization, and adverse kidney outcomes (**Central figure**).

CONCLUSION

The non-steroidal MRA finerenone reduced the risk of new-onset AFF across the CKM spectrum. Given the heightened risk of AFF in CKM syndrome, finerenone may be an important therapeutic option to help reduce AFF-related morbidity and improve outcomes across the CKM spectrum.

TABLE 1: Baseline characteristics by treatment arm				
Characteristic	Placebo (N=7314)	Finerenone (N=7267)	Standardized Mean Differences	
Age	65.4 ± 10	65.2 ± 9.7	0.02	
Female Sex	2390 (32.7%)	2487 (34.2%)	-0.03	
Race			-0.01	
Asian	1648 (22.5%)	1595 (21.9%)		
Black	282 (3.9%)	275 (3.8%)		
Other	395 (5.4%)	419 (5.8%)		
White	4989 (68.2%)	4978 (68.5%)		
Region			0.008	
Asia	1524 (20.8%)	1499 (20.6%)		
Eastern Europe	2063 (28.2%)	2103 (28.9%)		
Latin America	904 (12.4%)	896 (12.3%)		
North America	1035 (14.2%)	1016 (14.0%)		
Western Europe, Oceania and Others	1788 (24.4%)	1753 (24.1%)		
Baseline Body Mass Index (kg/m2)	30.9 ± 6.0	30.9 ± 6.0	0.0006	
Baseline Systolic Blood Pressure (mmHg)	135.59 ± 14.56	135.72 ± 14.51	-0.01	
Baseline potassium (mmol/L)	4.37 ± 0.45	4.37 ± 0.44	0.006	
Baseline eGFR (mL/min/1.73m2)	59.50 ± 21.98	59.23 ± 21.71	0.01	
Baseline UACR (mg/g)	399 [91, 1014]	401 [89, 1002]	0.003	
Baseline Hemoglobin A1C (%)	7.5 ± 1.4	7.5 ± 1.4	-0.02	
History of HF	1784 (24.4%)	1724 (23.7%)	0.02	
Baseline CKD	6496 (88.8%)	6482 (89.2%)	-0.01	
History of diabetes	6558 (89.7%)	6539 (90.0%)	-0.01	
Diuretic use at baseline	4368 (59.7%)	4249 (58.5%)	0.03	
ACEi/ARB/ARNI	7079 (96.8%)	7038 (96.8%)	-0.004	
Aspirin	3814 (52.1%)	3802 (52.3%)	-0.004	
SGLT-2 Inhibitors	594 (8.1%)	581 (8.0%)	0.005	
GLP-1 Receptor Agonists	443 (6.1%)	491 (6.8%)	-0.03	

ib	r

		jer ennea	leangleape
Trial	Finerenone Placebo		HR (95% CI)
FIDELIO-DKD	82/2576 117/2611	- - -'	0.70 (0.53, 0.93)
FIGARO-DKD	128/3344 129/3336	+	0.99 (0.77, 1.26)
FINEARTS-HF	76/1347 99/1367	- ∎¦	0.77 (0.57, 1.04)
	10/154/ 99/150/		0.77 (0.57, 1.04)
Age	96/2700 109/2756		0.77 (0.59, 1.02)
\leq Median (72 yrs) \geq Median (72 yrs)	86/3799 108/3756	-el	0.77 (0.58, 1.02)
> Median (72 yrs)	200/3468 237/3558		0.86 (0.71, 1.03)
Sex		-=-	
Male	196/4780 235/4924		0.84 (0.70, 1.02)
Female	90/2487 110/2390	-	0.81 (0.61, 1.07)
Race			
Asian	21/1595 49/1648	- -	0.44 (0.27, 0.74)
Black	12/275 2/282		6.01 (1.33, 27.05
Other	10/419 8/395		1.31 (0.49, 3.49)
White	243/4978 286/4989		0.84 (0.71, 1.00)
History of HF			
Absent	186/5543 211/5530	- -	0.88 (0.72, 1.07)
Present	100/1724 134/1784	- - -i	0.75 (0.58, 0.97)
Baseline CKD			
Absent	36/785 56/818	_ _	0.64 (0.42, 0.98)
Present	250/6482 289/6496	- e /	0.86 (0.73, 1.02)
History of DM			
Absent	47/728 55/756	_	0.84 (0.57, 1.24)
Present	239/6539 290/6558	-=-	0.83 (0.70, 0.98)
Baseline Body Mass Index (k	(g/m2)	i	
< 30kg/m2	101/3486 147/3521		0.68 (0.52, 0.87)
$\geq 30 \text{kg/m2}$	184/3759 198/3780	-4-	0.93 (0.76, 1.14)
Baseline albuminuria (mg/g)	cat.	i	
A1 (< 30 mg/g)	46/949 51/953	-	0.86 (0.57, 1.28)
A2 (30 to $< 300 \text{ mg/g}$)	110/2163 134/2152	− ∎î	0.84 (0.65, 1.09)
A3 (>= 300 mg/g)	128/4116 160/4169	- •]	0.80 (0.64, 1.01)
eGFR group			
< 25 mL/min/1.73m2	5/78 4/79 -	i•	1.18 (0.26, 5.32)
25 - 45 mL/min/1.73m2	102/2139 108/2169	+	0.98 (0.74, 1.28)
45 - < 60 mL/min/1.73m2	69/1856 101/1849	- - -'	0.67 (0.49, 0.91)
>= 60 mL/min/1.73m2	110/3193 132/3216		0.82 (0.64, 1.06)
Number of CKM conditions			
1	26/472 32/476		0.76 (0.45, 1.28)
2	217/6112 258/6152	-=	0.85 (0.71, 1.01)
3	43/683 55/686		0.75 (0.50, 1.12)
	Favors Finerenone	.5 1 2 3 5 7	Favors Placebo

Bayer AG provided travel support for MA Pabon. No additional financial or research support was received. The trials included in this pooled analysis were funded by Bayer AG.

FIGURE 1: Treatment effects of finerenone on new-onset atrial Ilation/flutter across major clinical subgroups

Hazard Ratio

DISCLOSURE INFORMATION