

e Brigham and Women's Hospital Founding Member, Mass General Brigham

in patients with mildly reduced or preserved ejection fraction: A prespecified analysis of FINEARTS-HF

Shingo Matsumoto, MD, PhD¹; Pardeep S. Jhund MBChB MSc PhD¹; Alasdair D Henderson, PhD¹; Brian L. Claggett, PhD²; Akshay S. Desai, MD MPH²; Meike Brinker, MD³; Patrick Schloemer PhD³; Prabhakar Viswanathan, MBBS PhD³; Jon W. Mares, DO³; Andrea Scalise, MD³; Carolyn SP Lam, MD PhD⁴; Michele Senni, MD⁵; Sanjiv J Shah, MD⁶; Adriaan A. Voors, MD⁷; Faiez Zannad, MD⁸; Bertram Pitt, MD⁹; Muthiah Vaduganathan, MD, MPH²; Scott D. Solomon, MD²; John J.V McMurray MD¹

1. British Heart Foundation Cardiovascular Research Centre, University of Glasgow, Glasgow, Glasgow, United Kingdom. 2. Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA. 3. Bayer, Research & Development, Pharmaceuticals. 4. National Heart Centre Singapore and Duke-National University of Singapore. 5. University of Milano-Bicocca, Papa Giovanni XXIII Hospital, Bergamo, Italy. 6. Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. 7. University of Groningen, Groningen, the Netherlands. 8. Université de Lorraine, Inserm Clinical Investigation Center at Institut Lorrain du Coeur et des Vaisseaux, University Hospital of Nancy, Nancy, France. 9. University of Michigan School of Medicine, Ann Arbor, MI, USA.

Background

An initial decline in estimated glomerular filtration rate (eGFR) often leads to reluctance to continue the life-saving therapy in patients with heart failure (HF). However, this early decrease in eGFR has been shown to predict a favourable response to several HF therapies. We have analyzed the early change in eGFR and outcomes in patients treated with the non-steroidal mineralocorticoid receptor antagonist (MRA) finerenone.

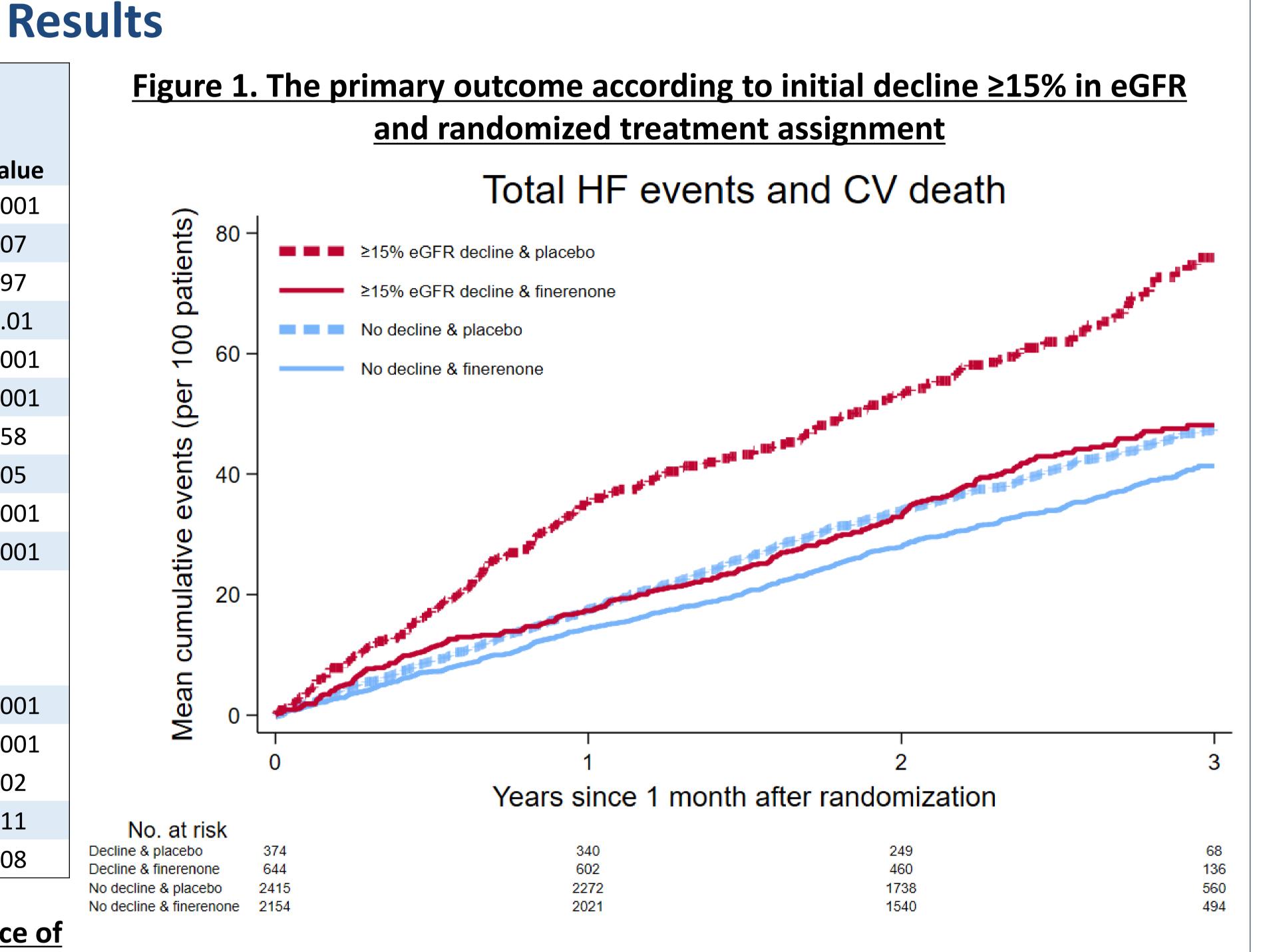
Methods

In this prespecified analysis of FINEARTS-HF, we examined the association between initial decline in eGFR (\geq 15%) from randomization to 1 month (compared to no decline \geq 15% - hereafter referred to as "no decline in eGFR") and subsequent outcomes, in patients assigned to finerenone or placebo. Other definitions of decline in kidney function were also examined (Table 2 and Figure 2).

<u>Key inclusion criteria</u>: NYHA functional class II-IV, LVEF ≥40%, evidence of structural heart disease, and elevated natriuretic peptides

<u>Key exclusion criteria:</u> eGFR <25 ml/min/1.73m², potassium >5.0 mmol/L

To examine the association between initial decline in eGFR with finerenone and subsequent outcomes in patients with heart failure and mildly reduced or preserved ejection fraction (HFmrEF/HFpEF)


Purpose

Primary outcome

Total (first and recurrent) HF hospitalizations and cardiovascular death

Table 1. Baseline characteristics

		Initial decline	
	No decline in eGFR	in eGFR ≥15%	
	N=4,569	N=1,018	P-value
Age (years)	71.7±9.7	72.9±9.5	< 0.001
Male	2,542 (55.6)	535 (52.6)	0.07
BMI (kg/m²)	29.9±6.1	29.9±6.1	0.97
NYHA class III/IV	1,361 (29.8)	350 (34.4)	< 0.01
KCCQ-CSS	66.2±22.3	62.6±23.0	< 0.001
Systolic blood pressure (mmHg)	129.0±15.2	131.2±15.4	< 0.001
eGFR (ml/min/1.73m²)	62.2±20.0	62.6±18.2	0.58
eGFR<60 ml/min/1.73m ²	2,214 (48.5)	459 (45.1)	0.05
UACR (mg/g)	17 (6-61)	23 (8-90)	< 0.001
UACR category			<0.001
<30	2,756 (62.3)	540 (54.7)	
30-299	1,251 (28.3)	333 (33.7)	
≥300	418 (9.4)	115 (11.6)	
NT-proBNP (pg/ml)	997 (425-1865)	1185 (560-2318)	<0.001
- No atrial fibrillation	559 (299-1223)	746 (385-1560)	< 0.001
- Atrial fibrillation	1694 (1124-2721)	1833 (1212-2952)	0.02
LVEF (%)	52.5±7.8	52.9±8.0	0.11
LVEF ≥50%	2,883 (63.2)	673 (66.1)	0.08

Table 2. Early decline in kidney function at 1 month and the subsequent occurrence of

the primary outcome in each treatment group (landmark analysis)

	Placebo		Finerenone		
Definition of decline in kidney function	No decline	Decline in kidney function	No decline	Decline in kidney function	P for interaction
≥15% decline in eGFR					
RR (95% CI)	Reference	1.56 (1.22-1.99)	Reference	1.14 (0.90-1.43)	0.06
Adjusted RR (95% CI)	Reference	1.50 (1.20-1.89)	Reference	1.07 (0.84-1.35)	0.04
≥30% decline in eGFR					
RR (95% CI)	Reference	1.76 (1.13-2.75)	Reference	1.42 (0.90-2.23)	0.43
Adjusted RR (95% CI)	Reference	1.48 (0.91-2.41)	Reference	0.97 (0.58-1.63)	0.18
≥5 ml/min/1.73m ² decline in eGFR					
RR (95% CI)	Reference	1.06 (0.87-1.29)	Reference	1.11 (0.90-1.36)	0.70
Adjusted RR (95% CI)	Reference	1.25 (1.02-1.53)	Reference	1.17 (0.94-1.45)	0.46
≥10 ml/min/1.73m ² decline in eGFR					
RR (95% CI)	Reference	1.25 (0.97-1.61)	Reference	0.88 (0.68-1.15)	0.05
Adjusted RR (95% CI)	Reference	1.47 (1.13-1.91)	Reference	0.97 (0.73-1.28)	0.01

Figure 2. Association between finerenone use and adjusted risk of the

primary outcome according to initial changes in kidney function

	RR (95% CI)	P for Interaction
Overall —	0.82 (0.73, 0.94)	
≥15% decline in eGFR No Yes	0.84 (0.72, 0.98) 0.60 (0.45, 0.78)	0.04
≥30% decline in eGFR No Yes	0.82 (0.71 <i>,</i> 0.94) 0.36 (0.19 <i>,</i> 0.66)	0.18
≥5 ml/min/1.73m2 decline in eGFR No Yes	0.81 (0.70, 0.95) 0.71 (0.56, 0.90)	0.46
≥10 ml/min/1.73m2 decline in eGFR No Yes	0.85 (0.74, 0.98) 0.49 (0.36, 0.68)	0.01
≥0.3 mg/dL increase in creatinine No Yes	0.81 (0.71, 0.94) 0.57 (0.37, 0.88)	0.15
≥0.5 mg/dL increase in creatinine No Yes	0.82 (0.72, 0.94) 0.40 (0.20, 0.81)	0.03
.2 .6 1 4 Finerenone better	1.5	

Conclusion

Although an initial decline in eGFR was associated with worse subsequent outcomes in patients assigned to placebo, this association was not as strong (or even absent) in those assigned to finerenone. An early decline in eGFR can be anticipated with finerenone and should not automatically lead to the discontinuation of finerenone, as with other effective treatments in patients with HF.

Simultaneous publication

